Code: 20IT3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

OPERATING SYSTEMS (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Discuss the services provided by the operating system for efficient system operation.	L2	CO1	7M			
	b)	Describe computer system architecture.	L2	CO1	7M			
	OR							
2	a)	Define system call. Explain different kinds of system calls.	L2	CO1	7M			
	b)	Explain the operating system structure and its functions.	L2	CO1	7M			
UNIT-II								
3	a)	Distinguish between short term scheduler and long term scheduler.	L2	CO1	7M			

	b)	Discuss the structure of Process Control Block and show how CPU switches from one process to other process with a neat diagram.	L L 2	CO1	7M			
	OR							
4	a)	Consider the following set of process, with the length of the CPU burst given in Milliseconds.						
		Process Burst time Arrival Time						
		P1 5 0		CO3	10M			
		P2 3 2	L3					
		P3 6 3	20					
		P4 2 6						
		Draw the Gantt chart that illustrates the execution of these processes using the FCFS and SJF. Analyze the waiting time for each of the scheduling algorithms.						
	b)	Explain different multithreading models in detail.	L2	CO1	4M			
	UNIT-III							
5	a)	Describe critical section problem. List the requirements for the solutions of critical section problem.	L2	CO2	7M			

	b)	Illustrate Dining-Philosophers problem with neat diagram.	L3	CO2	7M		
		OR					
6		Consider the following snapshot of a system:					
		Allocation Max Available		CO2	14M		
		ABCD ABCD ABCD					
		Po 0 0 1 2 0 0 1 2 1 5 2 0	L3				
		P1 1 0 0 0 1 7 5 0	LS				
		P2 1354 2356					
		P3 0632 0652					
		P4 0014 0656					
		Apply Banker's Algorithm and determine whether the system is in safe state or not?					
	UNIT-IV						
7	a)	Define fragmentation and explain the concept of paging to avoid external fragmentation.	L3	CO4	7M		
	b)	Define Virtual Memory. Explain the process of converting virtual addresses to physical addresses with a neat diagram.	L3	CO4	7M		
	OR						

8	a)	Define Demand Paging. Explain the steps in handling a page fault.	L3	CO4	7M			
	b)	Consider the following reference string. 1,7,8,9,2,3,6,5,3,2,1,6,7,8,0,7,8,4,5,3,7,4,2						
		Analyze page fault rate using FIFO and	L3	CO3	7M			
		LRU algorithms, with four page frames.						
	UNIT-V							
9	a)	Compare and contrast the tree structured						
		directories and acyclic graph directories	L4	CO4	7M			
		with neat sketches.						
	b)	Explain and compare the SCAN and LOOK	L3	CO4	7M			
		disk scheduling algorithms.						
		OR		1				
10	a)	Discuss any two allocation method in a file	12	CO_4	71/			
		system.	L3	CO4	7M			
	b)	Analyze the performance of FCFS disk						
		scheduling algorithm on the following	L3	CO4	7M			
		queue.66,143,157,22,14,124,95,97,44.			, 141			
		Considering the initial head at 20.						